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1.00TV EXTENSION STUDY OVERVIEW

This activity is an extension of the Orbital Transfer Vehicle Concept Det'mition and System

Analysis Study that was initially awarded in July, 1984. The original study established the OTV

design, operations and basing concepts that were most effective in the situation where: 1) Shuttle

capability is growing aggressively; 2) Space Station is being phased in; 3) Decisions are to be

justified by a conservative mission model; and 4) Any large lift capability development is to be

jusdfied by high earth orbit transport benefits. This extension scenario establishes changes to the

OTV program that would result from: 1) A wide variety of agg-ressive mission models; and 2) A

large cargo vehicle capability whose DDT&E is not charged to the OTV program. Thus the

extension study opens the scope of potential recommendations by introducing a variety of

ambitious programs, and by making the large cargo vehicle recommended by the Space

Transportation Architecture Studies available at no acquisition cost to the OTV program. It is a

further objective of the extension study to evaluate the sensitivity of OTV program

recommendations to scenario variations such as different mission models, different launch vehicle

availability, and different space station availability.

We conducted this study in two primary parts, the f'trst culminating in the midterm review

and the second in the final review and this final report. The activities conducted in the fLrst part, as

shown in Figure 1, were primarily those that could be accomplished without a definition of the
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large cargo vehicle. When this def'mition became available from the STAS studies after the midterm

review, the activities that were dependant on this information were conducted. These primarily

delved into the effect of the availability of the large cargo vehicle on the preferred OTV program.

Requirements assessments were ongoing throughout the whole study, as the definition of mission

requirements is always in a continuous state of change. Operations and accommodations

assessments were also continuous, and supported all study activities as required. Final extension

study output includes definition of a baseline cargo vehicle supported OTV program and an

assessment of the sensitivity of this baseline program selection to mission model options, to launch

vehicle availability, and to variations in the space station development scenario. Finally,

recommendations relative to the OTV development activities that should be followed were made.

kj
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2.0 SUMMARY OF EXTENSION STUDY

2.1 EXTENSION STUDY OBJECTIVES

The purpose of this extension to the OTV Concept Definition and System Analysis Study

was to improve our understanding of the OTV program that will be most beneficial to the nation in

the 1995 - 2010 timeframe. This activity built on the effort completed in prior study effort. It

investigated the implications of the missions def'med for, and launch vehicle def'med by, the Space

Transportation Architecture Study (STAS). It delved more deeply into selected concerns.

The key new mission requirements identified for STAS reflect a desire for greater early

capability and more ambitious growth capability. The four key technical objectives and related

issues addressed are: 1) To update and expand prior study activities; 2) To investigate the impact of

a Large Cargo Vehicle CLCV); 3) To optimize OTV operations and space based OTV

accommodations; and 4) To investigate program alternatives applicable to different use scenarios.

We have updated the OTV program approach previously selected in the area of vehicle design.

New mission requirements, evolving space station definition, and proposed new launch vehicles

were evaluated. We enhanced our analyses of selected areas including aeroshield design, proximity

operations and the balance of EVA and IVA operations used in support of the OTV at the space

base.

These activities led to an improved def'mition of an OTV program that should receive

favorable consideration for an early new start. An important aspect of this effort was developing a

thorough understanding of the sensitivity of the OTV program selection to changes in use,

economic environment and technology development. We conducted sensitivity studies to establish

how the OTV program should be tailored to meet changing circumstances.

2.2 CONCLUSIONS - RESULTS

This extension study has assessed the impact that the existence of a Large Cargo Vehicle and

a variety of aggressive mission models would have on the preferred Orbital Transfer Vehicle

program. We find that the low Earth-to-Orbit transportation cost provided by the LCV, nominally

$70M to deliver 150,000 pounds to low earth orbit (LEO), is a significant benefit to carrying out

any high earth orbit program. We prefer an OTV program supported by a large cargo vehicle

whose acquisition cost is not charged to the OTV program. We find that an aeroassisted reusable

OTV remains the preferred design approach in the stipulated LCV, aggressive mission model

scenario. An OTV designed to operate from the LCV is different than one designed to be supported

by the existing Orbiter. We prefer a three in-line engine configuration that achieves engine-out



capabilitywith ashortconfiguration,andprovidesaconvenientgrowthpathfromunmanned
groundbasedoperationsto mannedspacebasedoperations.Wef'mdatwo vehiclefleetprovides
costeffectivesupportof thenominalcivil andDoD missionmodelsdef'medfor useby theSpace
TransportationArchitectureStudy(STAS).Thegroundbasedconfigurationshouldnotbe

man-rated,andshouldbeusedthroughtheoperationalperiod.ThelargerspacebasedOTV should
supportall GEOandlunar missions,whichencompassall man-ratedrequirements.

A spacebased OTV capabilityiskey totheoperationofadvanced missionssuch asthelunar

baseand manned Mars initiativesthathave been suggestedby theNationalCommission On Space.

Itisalsohighlybeneficialtotheoperationofthemanned GEO missionsthatarcexpectedtobegin

shortlyaftertheturnof thecentury.Our analysesshow thatthespace based OTV costper flight

willbe 10 % lower thanground based costper flight.We believeitispossibleforthespace based

OTV tobe economicallycompetitivewitha totallyground based program on a discountedlifecycle

costbasis,butitisnecessaryto takecareinconstitutinga spacebased program and tocreditallthe

potentialbenefitsof thespacebased program toachievethisgoal.The development costof

achievinga space based capabilitymust be controlled.Cost sharingof facilitieswith theOMV

program isnecessary,and thedevelopment of an efficientpropellantstoragefacilitythatismatchcd

withSpace Stationreboostsystem propellantrequirementsisencouraged. We f'mdthatthelow

costof theLCV tendstoreducetheeconomic advantageof spacebasingover ground basing,in

comparison withthe advantagethatexistsina scenariosupportedcompletelyby theexistingOrbiter

system enhanced by an Aft Cargo Carder based propellantscavengingsystem. In bothcases,the

operationaleconomy of spacebasingstems from more efficientutilizationof thelaunchvehicle.

Wc found thatmost OTV propellantrequirementscould bc providedby scavenged propellantsin

theOrbitersupported(lowflightrate)scenario,and thatthecostadvantageof scavenged

propellants over Orbiter transported propellants was very large. In the case of the lower cost LCV,

the cost advantage of"hitchhiked" propellants was less, but still significant. A corollary advantage

of space basing is that the more efficient utilization of the launch vehicle results in fewer Earth to

LEO launches and consequent lower use of a reusable, or partially reusable, launch vehicle.

Launch vehicle replacement cost is thus reduced. When these cost advantages are incorporated in

to the economic comparison of ground and space based OTV programs, they become very close on

a discounted life cycle cost basis, and the advantage lies with the space based concept in constant

year dollars.

We found further advantages to space basing OTV that make development of this capability

desirable beyond its potential for lower future operational cost:

1) Space basing assures access to GEO by providing an alternative transfer capability;



2) Spacebasingdecoupleslaunchandtransferactivity, enablingGEOpayloadlaunchto
LEOby foreign/commercialvehiclesandyieldinggreatermissionflexibility;

3) Fewergroundlaunchesaxe required, reducing the risk of launch area contamination and

the possibility of catastrophic accidents;

4) Space station based GEO transfer operations enable reduced payload losses through

checkout, burn-in, and repair at LEO -- which will lead to lower insurance rates;

5) A space based operation will reduce vulnerability to some low technology threat classes.

We found that the high traffic mission scenarios suggested by the strategic defense initiative

and nuclear waste disposal justify adding a small OTV that is efficiently tailored to support these

mission options. We found that the aggressive expansion of the civil mission scenario into very

large GEO spacecraft and advanced lunar base support did not justify development of a very large

OTV configuration. Rather, it proved more economical to use multi-stage configurations

comprised of smaller OTVs, or spacecraft segmentation. We also found an ancillary advantage of

space basing in the fact that it tends to desensitize the cost of HEO space operations to the cost of

the launch vehicle.

2.3 RECOMMENDATIONS

We recommend that an unmanned, ground based OTV capability be developed in the mid

1990's, and that this capability be retained throughout the foreseeable future. Development of this

vehicle as an aeroassisted reusable vehicle is economically justified, even in the most modest

projected mission scenarios. We believe that, even though it is difficult to justify on a discounted

life cycle cost basis, the lower operational cost of space based OTV missions and the ancillary

operational benefits justify investment in space basing. We recommend directing further Phase A

effort at identifying an initial OTV that will be useful whether or not a large cargo vehicle program

is initiated in the near future, and one that has a good growth path to space based capability. We

believe the key to meeting this objective is to develop a concept that can fly in an Aft Cargo Carrier

or a large cargo vehicle with minimal design penalty. After this concept is delineated, an extended

Phase B should optimize the concept, and a full scale development directed at achieving a mid 90's

initial operational capability should be undertaken. The scheduling of the full capability, space

based OTV development program depends on the progress of the Space Station program, but we

recommend undertaking this development as soon as possible.



3.0 MISSION AND LAUNCH VEHICLE DRIVEN REQUIREMENTS

The STAS mission model defines four program options for both the civilian and the DoD

program. Our studies were ground ruled to deal with five of the 16 possible combinations as

shown in Figure 2. Scenario 2, representing the baseline civil and the normal growth DoD options

was used for all design decisions and recommendations. The impacts of the other Scenario

requirements summarized were studied as sensitivities. The major differences from Scenario 2 are

as follows:

• Scenario 1 has no manned or lunar missions. Its traffic level is roughly equivalent to

the Revision 8 Nominal Model that was used in the 1984/85 portion of this study.

• The OTV portion of Scenario 3 is changed little from Scenario 2, but does have three

additional large planetary missions.

• Scenario 4 has a large increase in DoD traffic to low altitude, mid-inclination orbits.

• Scenario 5 reflects the new Lunar Base and Manned Mars initiatives suggested by the

National Commission on Space, and a large number of nuclear waste disposal missions.

SCENARIO 2

_D GEO MISSIONS

,EARLY 14.5 K 0ELNERY TO GEO

•GROWTH TO ;5 K DELIVERY

• t2 K UP/10 K RETURN

• MAJOR TRAFFIC IN MULTIPLE DELIVERIES

SCENARIO t

•TRAFFIC _.

ALENT TO REV B

•NO MANNED

MISSIONS

NORMAL
GROWTH

SOl-lOW

RAt SOl

SCENARIO 4

*VERY HEAVY TRAFFIC TO LOW

ALTITUOE. MIO INCLINATION ORIBIT, _

gMUMBLIOq IM41ELINE 8ASL=LINEWITH
t_lrN MOOF.Sl AOGRES,_/|
E3GmMICN EXPN_IK3N

%

-Q

SCENARIO 5

• ! 00 K TO GEO

(SEGMENTED)

•MNqNED LUNAR

PROGRAM

•LARGE LUNAR

STATION ANO

LOGISTICS

,CONSIDERABLE

NUCLEAR

WASTE DISPOSAL

SCENARIO 3 I

•LARGE INCREASE IN LEO TRAFFIC ]

•3 AOOITION/_ HIGH ENERGY PLANETARY MISS_ !

Figure 2 Revision 9 Mission Model Characteristics
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The major characteristics of the three launch vehicle options considered in the extension

study, the shuttle, a large cargo vehicle and STS II, are summarized in Figure 3. Nominal payload

capability, cargo bay size and cost are shown -- as are variations considered from a sensitivity point

of view. The nominal availability date for the large cargo vehicle is 1995, the STS 1-[availability

date is 2002. Consideration is also given to a sensitivity scenario where advanced launch vehicle

availability dates are delayed. Note that, unlike the groundrule used during the first part of this

study, these capabilities are available without sharing the development and build cost required to

acquire them.

NOMINAL

CHARACTERISTICS

65,000 LB TO LEO
15 X 60 FT R[r
$90.8M / FLT @

STS 20 / YR (ETR)

150,000 LB TO LEO

25 X 90 FT UP
NO RETURN
1995 EARLIEST lOG
$70M / FLT @

20/YR "
LCV

65,000 LB TO LEO

¢_ 15X 60 FT FVT

2002 EARLIEST IOC
$20M / FLT @

45 / YR *

STS II

• NO DDT&E COST TO OTV PROGRAM

VARIANCE

ACC UP @ $2.4M / FLT
($171M DDT&E)

100 - 200 KLB

(22- 33) X (90- 100) UP
RETRIEVE @ $15M _flt
?
$50M- $85M

40 - 80 KLB
(15- 23) X (30 - 70) FT R/T
?
$20M - $30M

Figure 3 Launch Vehicle Options



4.0 STS BASED CONCEPT DEVELOPMENT

The initial portion of the extension to the Orbital Transfer Vehicle Extension Study was used

to update Phase 1 vehicle designs to reflect changing mission and system requirements, to conduct

a common basis trade of candidate acroassist devices, and to conduct a trade study to identify the

preferred STS Cargo Bay OTV design concept.

4.1 UPDATE OF PHASE 1 VEHICLES

Our 1984/85 studies established that the Revision 8 LowMission Model justified an OTV

fleet comprised of two vehicles: An unmanned, ground based, cryogenic OTV designed to be

lifted to orbit in the Aft Cargo Carrier;, and a man-rated, cryogenic OTV permanently based at the

Space Station. Both configurations used a four-propellant-tank concept. Since the ground based

configuration was not man-rated, it used one main engine. This engine incorporated new

technology, but pressed it only to a performance level of 475 seconds specific impulse to reduce

development risk. This same engine is used in a dual installation in the space based configuration.

The propeUant capacity of the ground based configuration was 45,000 pounds. In the Revision 8

scenario, the space based configuration must retrieve a 7500 pound manned capsule. Its 55,000

pound propellant capacity and its 44 foot aerobrake diameter were sized to meet this requirement.

Both configurations used composite structure -- graphite epoxy for the cool structure and graphite

polyimidc for the hot aerobrake support structure. The selected program was justified by the

Revision 8 Low Mission Model. The IOC for the ground based system was 1984, and the space

based IOC was 1999. This scenario justified development of the ACC scavenging system rather

than a new large capability propellant tanker. The space based vehicle, although not initially

man-rated, had all the equipment installed that was required to make this possible. The only

additional requirement to achieve man rating was validated flight experience, which was to be

gained during the early unmanned years of space based operation.

v



Figure 4 shows an updated version of the ground based OTV recommended by the 1984/85

study effort. Updates were required to meet the improved definition of the low altitude debris

model currently available, and to meet the vibration environment anticipated in the ACC. The

resulting updates are: Beefed up structure to provide a margin for possible load increases and the

ACC vibration environment anticipated; And the addition of debris shielding to the propellant tanks.

We also redesigned the aerobrake to more faithfully implement the blunted cone aerobrake shape

proven on the Viking Mars landers. In the initial design, aerobrake ribs were curved to fit more

readily into the dedicated ACC. In the updated design, the fold is moved outboard to enable the

incorporation of straight ribs. The resulting weight increases are reflected in the figure.
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Figure 4 Updated Ground Based Cryogenic OTV



The primary updates to the space based cryogenic OTV concept developed in the 1984/85

study effort are with regard to overall sizing and additional meteoroid and debris protection. The

revision in overall sizing results from the updated mission model being used for this study (Rev.

9). This mission model requires a 74 Klb propellant capacity OTV to perform the 12,000 pound

up, 10,000 pound return manned GEO Sortie and GEO Shack Logistics missions. Therefore, the

vehicle has been scaled up in size from the 55 Klb propellant capacity required in the earlier effort.

The revised configuration and associated weight statement is shown in Figure 5.

WEIGHT

AEFIOeRAKE 1|00
TANKS 1025
STRt_'nJFIE 1370
SUPPI_T (ASE) t t4
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PROPELLANTS, ETC. 74015

LOADED WEIGHT 82393

I
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TAHK SUi:tFAC_ TORU$

METEOROIO .._'-'/,,

h-.
GRN_UTE EPOXY_. __/ __ ' • _ iLL (2PLCS)

)' wrr_tr._,E.q_0cFOAMSTRUCllJRE ' _ ] ] V HONEYCOMB COVERED

• CRAOLE l/ L_.VX TILE S

WTEmACE---/ (_ _ Mut.'nm_.yNr_'U.ON

Q FELT ANO SEALED

NEX'I_L ON GI:LIPHITE
POLYIMIOE FRNdE

Figure 5 Updated Space Based Cryogenic OTV

4.2 AEROASSIST TRADE

A comprehensive, common basis, design comparison was developed for the three basic

aeroassist concepts under consideration. The concepts are illustrated in Figure 6 -- the rigid

aerobrake, the flex aerobrake, and the ballute. The design evaluations were completely

comparable, and used Martin Marietta estimating factors throughout. The design was selected to

perform the maximum GEO round trip mission as defined early in the extension study -- a 13,300

pound up, 11,300 pound down mission with a 23 foot length. This payload is slightly heavier and

longer than the one defined by MSFC after the midterm review (12K up, 10K down and 15 feet

long). It still suffices on a common reference condition, but does drive the ballute design to a

larger diameter to achieve aerodynamic stability. Selection criteria included program cost, vehicle

performance, growth potential and flexibility.
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Figure 7 shows the weight and cost data derived for each of the space based OTV concepts

considered during this trade study. The results indicate that production and development costs

cannot be used as significant discriminators in comparing the vehicle concepts. The major cost item

is the operational cost of providing propellant for the OTV and maintaining the vehicle in space.

The propellant required is primarily a function of the vehicle dry weight shown. The data shows

that the ballute is only effective with the I500°F backwall temperature -- which could have an

impact on retrieval spacecraft thermal protection. With the 1500"F backwall temperature, the ballute

is corn _etitive with the rigid brake. The flex brake design at a L/D = 0.12 is the lightest. Included
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in the operational costs are the servicing operations of removing and replacing the aeroassist

devices on each of the OTV concepts. This particular operation is the only discernible difference in

space based maintenance of the three concepts and is still relatively minute in comparison to the

propellant launch costs.

The preferred flex brake design is summarized in Figure 8. The central 14.5 foot diameter is

fabricated using shuttle tiles set on a graphite polyimide honeycomb cone with engine doors

incorporated in iL This structure forms a base for the graphite polyimide ribs that support the

flexible portion. The flexible portion is a multi-ply Nicalon faced Q felt and NEXTEL blanket

which is sealed with RTV sealant on the cool (600* F) inside surface. The ribs are glued to the

blanket to provide torsional stiffness. An inflated torus provides required curvature at the periphery

of the brake, and stiffens the edge. As noted, this is the lightest design approach to a low L/D

aerobrake.

This flexible material is in a developmental stage, and its operational characteristics are not

well understood. In lieu of definitive data, its operational life has been estimated at five uses --

shorter than the rigid brake at 20 uses, but longer than the single mission Life of the ballute which

must be repeatedly flexed during use. The data being developed by the Ames Research Center is

promising, but needs to be pursued further. Therefore, our recommendation -- use the concept but

continue to support the materials technology program.

FLEX BRAKE PROVIDES
LIGHTEST, LEAST LCC
APPROACH

FLEX MATERIAL
IS DEVELOPMENTAL
AND INVOLVES SOME
TECHNICAL RISK

RECOMMENDATION
- INCORPORATE FLEX BRAKE

IN CONCEPT
- PURSUE MATERIAL

TECHNOLOGY DEVELOPMENT

IIIFI.ATED

TORUS--_

.____ 44 F3' DIA AEROBRAKE

__" _GRAIIHITE POLWlIDE

_,_ TILLS
_ RULTI-Pt.I' NICALON,

q FELT kilo SEALED
NE]tTEL ON GRAPHITE
POlL/R10E FRAME

V

Figure 8 Recommended Aeroassist Concept
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4.3 CARGO BAY VEHICLE TRADE

The concepts considered in the cargo bay trade study include various configurations of

storable and cryogenic propellant vehicles. Cryogenic propellant concepts were sized for the three

tankage configurations shown in Figure 9. In addition, the concepts were sized for two aerobrake

types (ballute and flexible folding fabric brakes) for each of the tankages. Each of these cryogenic

conceptsis intended to be fullyreusable with the exception of the aerobrakes which may be

replaced after each mission.

CRYOGENIC CONFIGURATIONS

TANDEM TOflOID

AEROBRAKES:

TANOeU

FOLDING FABRIC AND BALLUTE

PARALLEL CYLINDER_q

LH21

i tO I

H

STORABLE
CONFIGURATIONS:

-EXPENDABLE

-REUSABLE
PERIGEE KICK

SOLID APOGEE
KICK STAGE

BASIS FOR COMPARISON

• THE 35 GROUND BASED

MISSIONS IN THE LOW

REV 8 MODEL

• VEHICLE SIZED FOR

15J:)00 LB DELIVERY

CRITERIA

• LAUNCH COSTS

. FLIGHT OPNS COSTS

• FLEXIBILITY

• DEVELOPMENT COSTS

• PRODUCTION COSTS

Figure 9 Cargo Bay Options

The storable propellant concepts include a liquid expendable stage and a reusable liquid

perigee stage with a solid apogee kick stage. These were conceived to compare lengths and total

costs with the most attractive cryogenic configurations.

Cost comparisons were made on the basis of the 35 ground based missions in the low

Revision 8 mission model. Vehicles were sized to perform a 15,000 pound GEO delivery mission

(slightly over the 14.5 Klb mission that appears early in the Revision 9 mission model). This

sizing provides a stage that can perform all early model missions, even though the launch mode

could be complex if STS payload growth is not achieved. The criteria used to select between these

options includes the cost parameters indicated in Figure 9, and consideration of the flexibility the

configuration provides for growth to larger energy applications. Launch cost is strongly influenced

by configuration length and the impact it has on the STS charge algorithm in non-weight-limited

manifest.
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Figure lO shows the selection data for the ground based OTV candidates. Gross weight and

length data reflect vehicle sizing to perform a 15,000 pound delivery mission; adequate to support

near term Revision 9 model delivery requirements. The primary evaluation criteria of interest is

cost associated with STS flights for OTVs and their payloads. Length of each concept in the cargo

bay is the large driver in determining STS flights required when vehicle gross weight is not limited.

This was assumed to be the case in determining the number of flights required shown in Figure 10.

Although production and development costs may not be significant in terms of decision making,

they are accounted for.

OPTION 2
2.s CIVIL MISSION MODEL

1995-97
2

I.$

f198S $e)
1

0.5

0'

T_ ST(_W. _6'_lqL TCFqL,8TwANDQd.
FLEX REX EXP. _ _ 8AL

GROSS WT 67.3 66.7 77.5 82.9 68.3 67.8

LENGTH 26.0 33.5 11.5 24.0 26.5 31.3
(FT)

FLIGHTS 31 42 23 28 31 40

Figure 10 Evaluation Criteria Summary (Discounted $)

• O'¢pAl_t_

• OOTAS

• R&T

Consideration must also be given to overall flexibility for flying higher energy missions as

well as adapting to the possible new generation booster vehicles. In addition, a smooth transition

from a ground based vehicle to space based is a desirable feature, providing that this growth path is

cost effective for a given vehicle concept.

Torus flex, torus ballute, and the two storable configurations are competitive cost options.

The storables were eliminated because they were too heavy to fly in any version of STS anticipated.

While the cost of the ballute design is competitive, we selected the flex brake concept because of its

superior characteristics relative to the space based application. We recognize the torus tank concept

is difficult to grow to a 2 engine man-rated configuration. This ground based vehicle need not be

man-rated. Its cost advantage over the tandem tank configuration is sufficiently important to allow

a concept change when transitioning to manned, space based operation.
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Figure 11 shows the selected cargo bay ground based OTV, which is capable of delivering

15 Klb to GEO from STS deployment in LEO. The concept is attractive because of its short length

(compared with other cryogenic configurations) and high performance.
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Figure 11 Recommended Concept - Cargo Bay OTV

The main contributor to the short length of the vehicle is the incorporation of a toroidal LO 2

tank which surrounds the main engine package. Emphasis on short length while maintaining high

performance (maximum payload capability at minimum gross weight) is the reason for the selection

of this concept. Stage length plus ASE should not exceed 30 ft (according to the mission model

assessment) in order to minimize STS launch costs. In other words, 30 ft payload capability along

with sufficient performance are the major characteristics desired from a cargo bay OTV. This stage

meets these criteria with its 26.5 ft length and packaging characteristics with its ASE.

Two growth concerns exist with this concept -- how to install two engines for man rating,

and how to achieve growth to the ultimate requirement of a 25,000 pound delivery. We believe the

growth from the ACC configuration to the ultimate space based vehicle is to be preferred over

growth from a cargo bay vehicle.
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5.0 CARGO VEHICLE BASED OTV CONCEPT DEVELOPMENT

5.1 ROLE OF REUSABILITY

The first step in evolving the preferred cargo vehicle based OTV was to review the thought

process that established aeroassisted-reusable as the preferred option in the STS supported use

scenario, and and to apply it to the situation where a large unmanned cargo vehicle is available.

Figure 12 summarizes the trades conducted to assess the role of reuse in the large cargo vehicle era.

J

S
TECHNOLOGY _._

EXPENOABLE

(PAM. TOS. CENTAUR ALL-PROPULSIVE

&GROWTH CF.NTNJR) REUSABLE

S PROP CAP_

HI TECH

EXPENOABLE

CRITERIA

• COST FACTORS

• TECHNOLOGY IMPACTS

• GROWTH CONSIDERATIONS

Figure 12 Reuse Mode Options (Cargo Vehicle, Ground Based)

The current technology expendable family, a new all-propulsive reusable concept, and a new high

technology expendable concept were compared with the aeroassisted reusable approach. The

current technology expendable and all-propulsive reusable concepts were compared on the basis of

the 160 civil GEO missions in the Scenario 2 mission model. These missions included large

spacecraft retrieval missions, and were judged to be most representative of the traffic targeted for

OTV. DoD missions and non-GEO missions increase the use base of OTV, and would tend to

make the new aeroassist technology more readily justifiable. Since the basis used supported

aeroassist, we felt a larger mission sampling could only reinforce our conclusion.

We also investigated the general parameters associated with development of a high

technology expendable. Since we did not have the resources to conceive and thoroughly
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investigatethehightechpossibilities,wesettledfor establishingthecostparametersthatwould
haveto beachievedto makethisapproachawinner.

Thecriteriausedtodiscriminatebetweenoptionsis identifiedinFigure12. Costfactors
includefrontendandoperationalcost,aswell aslife cycle cost viewed in constant and discounted

dollars. Technology and growth implications were also subjectively evaluated. We feel that

developmental concept that yields lowest cost per flight and breaks even in discounted dollars

should be considered a highly desirable approach.

Comparison of the three concepts identified with a two member family of aeroassisted

vehicles shows the following: (1) The current technology upper stages, while saving

approximately $1B in development cost, require that 292 stages be built and expended, requ-ire that

130 more flights be manifested on a launch vehicle, and lose in life cycle cost by $13.8B in

constant year dollars ($1.7b in 10% discounted dollars); (2) The all propulsive approach, while

saving approximately $0.2B in development cost, costs $24M more per flight to operate, and loses

in life cycle cost by $2.2B in constant year dollars, ($0.2B in 10% discounted dollars); (3) The

high tech expendable approach has to achieve a build cost of $32M per article to be competitive.

This comparison was based on weights associated with light weight design techniques. Should

lightweight design be sacrificed for low cost design, this target cost would grow rapidly because of

increased propellant logistics requirements. Two ways this goal could be achieved are: Through a

strong learning curve developed over a 15 year buy; And through an as yet unidentified technical

breakthrough in design or manufacture. It is not clear that either possibility can be achieved.

The aeroassisted reusable approach is to be preferred over expendable and all-propulsive

reusable operational modes in the cargo vehicle era as well as it was in the STS era. We feel there

is limited potential for a cost competitive high-tech expendable approach to be achieved. As a

consequence, aeroassist research technology should be pursued vigorously. Generic R&T in low

cost expendable upper stage technology should be avoided. Response to good original ideas that

have potential of reaching the cost improvement criteria identified would be, of course,appropriate.

The possibility of multi-year contracting for expendable vehicles should be explored. Success in

these areas could impact our preference for reusable vehicles.

5.2 SCENARIO 2 VEHICLE SELECTION

One of the main changes in the program scenario to be considered in this extension study is

the possibility of using a large cargo vehicle on an operational cost basis - the development is sunk

cost on the part of other users. The series of trade studies summarized here developed a def'mition

of the preferred configuration of an OTV designed for use in conjunction with the large cargo

vehicle. The key questions to be answered are: What diameter; How many engines; And what



arrayof vehiclesinan OTV fleet.The possibilitiesarcsketchedinFigure13. The key

discriminatingfactorsarc summarLzcd. We found that,forthepayloadsand cargo bays defined,

stagelengthremains a concernforground based vehicles.The number ofenginesselecteddepends

on reliabilityand sparesconcerns.Wc found threeinlineenginesattractivebecausetheyaffordeda

one engineoutcapabilitythatdid notrequirelargecnginegimbal anglesand increasedstagelength.

The number of members inthevehiclefamilyisaconcern thatisestablishedby thebottom line--

thevarioussegments ofcosL

I-AJOR I

__ _ 15' D
2 ENGINE

Ob!ectiy0 . MAN RATING

SELECT OPTIMUM DIAMETER, NUMBER OF
ENGINES AND PROPELLANT LOAD (S) FOR
CARGO VEHICLE OTV

Selection Criteria

KEY FACTORS

- LENGTH & TRANSPORTATION CHARGE
- RELIABILITY & MISSION LOSS COST
- SPARES & EXPENDABLES
- FAMILY SIZE VS. DDT & E AND OPERATIONS

• BO'I-rOM UNE: INVESTMENT, OPERATIONS &
TOTAL COST

__ WIDE BODY

2 ENGINE

MAN RATING

WIDE BODY

3 ENGINE

MAN RATING

Figure 13 Cargo Vehicle OTV Options

FLEET: 1,2 OR 3 SIZES i

The summary resultsofour cargovehicletradesareshown inFigure 14. The details

backingup thissummary arcincludedinVolume IX. The engineu'aderesultsaretabulated.This

costanalysisincludesenginesparerequirements,manifestedlaunchcost,and mission losscost.

The dominant goalsarctokeep theconfigurationshort,and tokeep theconfigurationreliable.Thc

bestnetsituationis3 enginesfora cargovehicleconcept.2 enginesremainsthepreferredspacc

basedconcept,but thebestevolutionaryconceptappearstostaywith3 enginesinthecrawhcrc a

no-DDT&E cargo vehicleexists.

The bar charts in Figure 14 show life cycle cost in 1985 and discounted dollars for

configurations with 15 foot and large cargo vehicle diameters. The problem with 15 feet is that the

configurations are long. The problem with cargo bay diameters is returning the whole vehicle in

the ground based mode if it has to come back in the STS cargo bay. These data indicate that it is
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FLEET COMPOSITION
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preferable to disassemble tankage and throw it away if it won't fit in the STS bay rather than use a

long configuration. It is doubtful that a no-DDT&E large return cargo capacity would be better if

its recurring cost is the projected $15M/flight. These analyses are based on the concept that down

rides on the STS are readily available and that the only transportation charges arc an up charge for

ASE and on-orbit operations charge for disassembly and stowage.

The final trade data in Figure 14 shows that for 160 GEO missions, the basis used for most

of our space basing estimates, a two vehicle family is preferred. We elected to go with the 74/52

family rather than the 74/50 family because there is virtually no cost discriminator, and fewer stages

in the inventory results in a simpler operation.

The L/D selected for the OTV aeroassist device has a significant impact on OTV weight,

performance and cost effectiveness. We extended our research into the selection of the optimum

L/D for the OTV, and have succeeded in validating our recommendation of an L/D of 0.12. The

minimum requirement of L/D is to provide maneuver capability adequate to control aeroassist

maneuver exit apogee accurately in the face of expected navigation tolerances and variations in

upper atmosphere density. An additional consideration exists -- the possibility that proper use of a

higher LK) could ease aerobrake design requirements in aerodynamic heating and deceleration

g-level, and result in a lower weight. These possibilities were investigated. In prior study phases,
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it was established that energy savings resulting from performing a part of the geostationary return

plane change is not beneficial, so this possibility was not investigated further.

We have run a large number of control authority test cases using a four degree of freedom

simulation of our lifting aerobrake control scheme. Aeromaneuver passes through fourteen STS

measured atmospheres, incorporating various entry dispersions generated by guidance and

navigation errors, were simulated for various candidate aerobrakes. The table on the left of

Figurel5 summarizes some of the results. Excellent apogee altitude control is exhibited by L/D

down to 0.08 -- 0.06 is beginning to become inadequate. As a result of these studies and

companion studies by NASA and other contractors, we feel confident that an L/D of 0.12 is

adequate to control the aeropass maneuver.

Although L/D = 0.12 is adequate for control purposes, we also investigated whether a higher

L/D of 0.30 could result in a lighter brake due to an alleviated heating or loading environment. The

upper table on the fight side of Figure 15 compares the JSC rigid brake flown at various altitudes

in the control corridor. When flown as high in the corridor as control requirements permit, the

column labeled 0.3(+), heating rate was reduced, total heat was increased, and peak g-load was

reduced. When flown low in the corridor, the column labeled 0.3(-), the opposite changes were

observed. Tile weight increases as aeromaneuver altitude is lowered, since the impact of total heat

tJD
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12
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Figure 15 L/D Evaluation
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on insulation requirements is dominant. Structural weight increases as aeromaneuver altitude is

decreased, due to the increasing g-loading. Our data shows a weight optimum very near the center

of the corridor -- there appears to be no weight benefit from increased L/D. In the case of the flex

brake, as shown in the table in the lower right of Figure 15, the dominant factor is the increased

diameter of the aeroshield that results from the wake impingement issue on our relatively long

"thrust axis parallel to the aerodynamic axis" configuration. Again the clearly superior approach,

by a larger margin, is the lowest L/D acceptable from the control point of view.

We recommend incorporating an aeroassist device into the OTV that has a 0.12 L/D. This

selection will provide adequate aeromaneuver control, results in a less severe total heating

environment, and yields a lighter aerobrake design. The possible adverse consequence of this

approach is that it provides less margin for possible growth in atmospheric uncertainty and

guidance and navigation dispersions. It is our opinion that these parameters will be well

understood before the design is committed to hardware, and if an increase becomes warranted, it

should be incorporated at the time it is confirmed. The principal sensitivity issue is as follows.

There are, at this point, uncertainties in the aerothermal environment that will become better

understood after the aeroassist flight experiment is flown, and still better understood as operational

flight experience is gained. The f'trst flight aerobrake will be flown with conservatisms in design

that will protect against these

uncertainties -- for example larger diameters and thicker insulation. Our data indicates that the low

UD design will show a smaller weight penalty to accommodate these uncertainties than will the

higher L/D design. From this point of view, the low L/D design is to be preferred.

The conceptual design of the OTVs selected for use in conjunction with the cargo vehicle is

illustrated in Figure 16. The smaller unmanned vehicle has a 52,000 propellant capacity.

Cylindrical propellant tanks with square-root-of-two domes were selected to fit into the 25 foot

diameter of the nominal cargo vehicle payload shroud. A larger cargo diameter, sufficient to

support spherical tanks, would be beneficial due to the resulting lower tank gauges. The forward

ends of the LH 2 tanks (not shown) and LO 2 tanks are placed at the same station. The tank

diameters are selected so the three in line engines can be mounted between the LO 2 tank bottoms

and the heat shield when the nozzles are retracted, while the LH 2 tanks extend as closely as

possible to the aerobrake. The central core, including the center section of the aerobrake, is 14.5

feet in diameter, so it can be returned to earth in the 15 foot diameter STS cargo bay. The same

materials as were used in the 1984/85 study configurations were selected. Aluminum lithium

tanks, graphite epoxy cool structure and graphite polyimide hot structure was used. The 32 foot

diameter aerobrake uses shuttle tiles for its 14.5 foot diameter center section and engine doors,

while the outer flexible section is the Nicalon, Q-felt and RTV sealed NEXTEL blanket. Propellant
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tanksareexpended or retrieved on a Shuttle space available basis. Avionics are packaged on the

structural bulkheads at the forward end of the vehicle. Trusswork provides the central structural

core. This configuration is only 19.7 feet long, and manifests efficiently with payloads.

f

19,7' b

1<
52 KLb
GBOTV

I I

I "jL
,

• 3 ENGINES
• FULL BAY DIAMETER
• 15' CORE
• EXPEND TANKS FOR STS RETRIEVAL
• MINIMAL GB TO SB MODS

AVAILABILITY OF 'DOWN' SPACE
PREFER LARGER CARGO DIA
ENABLING SPHERICAL TANKS

Figure 16 Cargo Vehicle OTV Recommendation

The propellant capacity of the large man rated configuration is increased to 74,000 pounds to

enable performance of the 12,000 pounds up, 10,000 pounds down Manned Geo Sortie and GEO

Shack Logistics missions. This increased size is achieved by stretching the propellant tanks at the

same diameter. The longer stage and spacecraft retrieval combine to require use of a 38 foot

diameter aerobrake. Total stage length increases to 25.5 feet. Otherwise, the configuration is

essentially similar to the smaller unmanned vehicle. This stage can be extended to space based

service by deleting the SOFI insulation on the hydrogen tanks and adding more MLI, adding

meteoroid protection, and adding engine quick disconnects and other space base servicing aids.
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The pertinent sensitivities associated with these vehicles are indicated. If down space were

not readily available as assumed, the cost of ground basing these configurations would escalate --

making space basing more attractive. As previously noted, a cargo bay large enough to

accommodate spherical tanks would make the vehicle fighter and result in lower transportation

charges to perform the mission model.

5.3 ALTERNATIVE VEHICLE ANALYSES

We tested the possibility that some of the mission scenarios could justify additional members

to the OTV family just identified. Our initial thought was that the SDI mission in Scenario 4 might

justify a storable propellant selection, since the mission velocity requirements were so low. As it

turned out, the mission weights were so high the higher Isp continued to be preferred. We did

investigate a smaller, 40,000 pound propellant capacity stage that could be used to perform the

indicated mission array instead of the 52,000 pound stage already in the family. We found that a

crossover of 420 missions would justify the additional DDT&E. Therefore, Scenario 4 (SDI

missions) or Scenario 5 (Nuclear Waste) in conjunction with the smaller missions in the model

could justify development of the additional stage size.

We also investigated the use of a large, 240,000 pound propellant capacity stage to perform

the very large missions in Scenario 5, rather than segmenting the large GEO mission and

performing the large lunar and planetary missions with multi-stage, propellant module approaches

contrived from the stage elements already identified. We found that the development of a very large

stage was not justified.

5.4 OPERATIONS ALTERNATIVES

The degree to which EVA operations will figure in OTV space basing operations and the

most effective means for performing OTV flight operations in proximity to the Space Station are

two of the more significant operations issues examined during this extension study. The EVA

versus IVA issue bears on the balance between space station crew utilization and the cost of

software and equipment that would allow space based OTV operations to be conducted with a

minimum of participation on the part of the limited space station crew. The candidates investigated

include the spectrum from primarily EVA activity to remote manipulation with an IVA operator to

automated operation with only manned supervision. EVA operation normally requires two EVA

crewmen and an IVA operator at all times when there is a crewman outside. Remote manipulation

involves one fuUtime crewman. Automated operation supervision would allow an operator to

manage more than one task simultaneously. There is a clear trade between development cost,

operational cost and crew dedication.
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Wealso investigated flight _tions that must be conducted in close proximity to the space

station. The candidates investigated were: (1) Adding OTV systems that would enable 'driving' up

to space station docking with the OTV; (2) Adding limited systems to both OTV and OMV that

would enable them to act as a total unit capable of achieving a space station docking approach; And

(3) A technique involving separating OTV and any returning payload so the OMV could dock to the

OTV payload interface, or to the separated payload at the OTV interface, and perform separate

docking approaches to the space station totally under control of the OMV. The criteria for judging

these approaches include vehicle complexity, operations complexity, and cost considerations.

Figure 17 illustrates the trade between operational and developmental costs that exists as the

OTV maintenance concept shifts from EVA towards continually more automated operations. This

comparison is based on our experience that was gained from IR&D and contract activities involving

our Space Operations Simulation and Artificial Intelligence laboratories. It is clear that a cost

optimum exists where no EVA is involved in normal operations. The appropriate degree of

automation will probably fall short of only supervisory control. In addition to this cost oriented

comparison, we laid out objective and subjective comparisons of the operational attributes of the

various approaches and scored them. The scoring results indicated that a proper balance would

probably lie on the fully automated side of D/A/Remote operations, rather than the EVA side.
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Figure 17 Operations Evaluation
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In the proximity operations arena, we identified the changes that would have to be made to

baseline OTV and OMV designs to accommodate the three major proximity operations candidates

identified. Only in the third case shown in Figure 17 were no system changes required. This

approach does involve more operations and more operations cost than the other two. We,

representing the OTV interest, would prefer this option because it involves no developmental

impact on the OTV program. The best approach requires participation of all involved parties: OTV;

OMV; and Space Station.

We recommend that no EVA activity be included in normal OTV operations at the space base

for the reasons cited, although EVA contingency backup of all operations is necessary. Initial

capability probably should include less automation than the ultimate system, to minimize the cost

and risk involved with getting started.

The OTV program would benefit from conducting all operations in proximity to the space

station with the OMV, but this may not be the overall best approach. We recommend that an OTV /

OMV / Space Station working group be constituted to evolve the overall best approach to proximity

operations.
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• 6.0 SPACE BASED VS GROUND BASED TRADE

We clearly established that space basing OTV is the preferred operational concept in the STS

supported scenario studied last year. We have revisited this issue in the large cargo vehicle

supported scenario being investigated in this extension study. A comparative evaluation was

conducted on the basis of the 160 civil GEO missions in the Scenario 2 mission model.

In the ground based scenario, all missions were launched on a large cargo vehicle, one

mission per flight, with launch charge based on the STS charge algorithm (3/4 length or weight

load factor results in a full launch cost charge). This ground based scenario reflected our 25 foot

diameter OTV for ascent, and a down volume restricted to the 15 X 60 foot orbiter bay. Any

tankage that could not be packaged for retrieval in this volume was discarded, and added to the

build cost for the next flight. One retrieval per STS flight was assumed, with the only retrieval

charge being for any retrieval ASE required.

In the space based scenario, the same 160 civil GEO missions were launched from a space

base. The remaining missions in the Scenario 2 mission model were assumed to continue to be

ground based. Propellant 'hitchhiking' was assumed feasible with no transportation charge to the

OTV program for the hitchhiked propellants. Cost of the hitchhiking system, propellant tanks and

operations, were charged to the OTV program. Space Station support to the OTV program was

charged to OTV. OTV flight operations when away from the Space Station were assumed to cost

the same when either ground or space based.

A full cost assessment was evolved. The major sensitivity factors investigated were launch

vehicle cost, accommodations acquisition cost, hitchhiking efficiency, and cargo vehicle

replacement cost. Evaluation criteria included discounted and non-discounted life cycle cost, cost

per flight, and non-cost factors. Some of the non-cost factors that influence the desirability of

acquiring a space based OTV capability are as follows:

1) Launch/Transfer Coupling: Space basing decouples the launch vehicle and its associated

prelaunch and flight operations from the equivalent operations associated with the Orbital

Transfer Vehicle. One benefit of this decoupling is that any launch vehicle ( Shuttle,

Titan IV, or Ariane) can provide payload transportation to LEO with OTV providing

deployment to mission orbit. This is likely to be attractive to a certain segment of customers.

On the other hand, the time from spacecraft rollout at the factory to on orbit operation is

likely to be longer. Some customers will prefer space basing, and some will not.
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2) Mission Flexibility Imt)act: Space basing has an advantage because it can support buildup

of missions that are larger than one launch vehicle can carry. This would be important in the

early mission years if launch capability were limited to existing shuttle capability. If a large

cargo vehicle were developed, the capability would be advantageous when the nation

undertakes the anticipated lunar base and manned Mars initiatives. Conversely, ground

basing has a significant performance advantage for high inclination missions that would

require large orbital turns if launched from the currently envisioned Space Station.

3) F_quency of Ground Launch: Higher load factors are expected for launches supporting

Space Station since propellant hitchhiking will f'tll capability remaining after 'hard' payloads

have been manifested. Fewer launches means less contamination of the launch area

environment from SRB and other exhaust products, as well as less possibility of a

catastrophic failure of the launch system. This is a distinct advantage for the space based

system.

4) _: The space based system requires neither OTV transportation from ground

to LEO nor partial OTV disassembly for return to the ground in the orbiter bay on every

mission. However, the space based system must be maintained under what are currently

unfamiliar conditions. The cost of maintenance operations has been estimated and reflected

in our assessments, but there remains an element of risk in space based operation that must

be considered in the decision process.

5) OTV & Spacecraft Checkout: Space basing requires development of a capability to check

out systems in the space environment. Once developed, this capability enables checkout of

both spacecraft and OTV after passage through the launch environment, which is generally

the most severe environment either will encounter. Coupled with a maintenance capability,

this offers a potential for recovering from infant mortality, and occasionally achieving a

significant cost benefit.

6) Launch Cost SensitiviD/: The cost of delivering 'hitchhiked' propellants to the Space

Station is assumed to involve only the cost of the hitchhike system (tanks and operations),

and not to involve u'ansportation charges. This tends to decouple the cost of OTV operations

from launch vehicle cost in the space based mode. If the launch costs escalate, the cost of

OTV operations does not escalate in response. On the other hand, the benefit of

breakthroughs in launch vehicle technology will not as directly influence the cost of OTV

operation.



7) Technology Advarl¢¢:Space basingpotentiallyoffersthedualadvantagesofenhanced

internationalprestigeand thesynergismsthatcan followthedevelopment ofnew

technologies.These benefitsarcnotreadilyquantifiable,but arccertainlynotpossible

withoutventuringintoa new arena.Conversely,ifnothingisventured,nothingislost.

Eliminatingthenew spacebascd technologyreducescostand scheduleriskformost users.

Itisclearthatbothoperationalmodes have significantadvantages.Ifa spacebased capabilityis

developed,we do not believeitshouldsupplanta groundbascd capability- itwould be desirable

forbothtocoexistthroughouttheforeseeablefuture.There arcsignificantadvantagesto

possessingthespace based OTV launchcapabilitythatcan justifytheclcvelopmcntalinvestment.

The key economic issuesthatwillestablishtheeconomic feasibilityof spacebasingO'IV are:

The costadvantageresultingfrom fullyutilizingthelargecargo vehicleliftcapabilityby fillingout

thecargomanifestwith 'hitchhiked'propcUants;The costof acquiringOTV accommodations atthe

space base;And thebenefitof reducinglaunchvehicleuse thatresultsfrom thespace based

operationalmode.

We conducted an evaluationtoestablishwhat portionofOTV propellantrequirementscould

likelybc provided by the 'hitchhike'concept. Historically,shuttlemanifestinganalyseshave

shown thata 75% loadfactoristobe expected.Wc appliedthisfactortothelargecargo vehicle,

conceiveda discretearrayof tankagetouse theleftoverliftcapability,and investigatedplanned

cargo vehicleand OTV flightschcdulcstoestablishtheresulting'hitchhike'capability.Wc found

that70% of theunused space couldbe utilized.The fuclcarryingcapabilityiscompared withthc

OTV requirementinFigure18. Itappearsthat63% ofOTV propellantrequirementscan bc tactby

theconcept.Our ground rulesstatethatthereisno transportationchargeforhitchhikedpropcllants,

butthatthesystem oftankageand operationsistobc charged. These ground rulesarcrcflcctcdin

subsequentanalyses,and thequantityof propellantsavailablehas bccn treatedparamctrically.
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Figure 18 Availability of Hitchhiked Propellant
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We conducted an evaluation of the possible cost of OTV accommodations at the Space

Station. This item is discussed in more detail in Volume IX. It is believed that the cost of initial

space based OTV accommodations can be reduced from the $936M estimated last year to in the

neighborhood of $418M by sharing the cost of accommodations with OMV, reflecting more

realistic software development cost, down sizing the hangar and propellant farm, and launching

elements with the lower cost large cargo vehicle. We also believe the space based mode should be

given credit for a reduction in launch vehicle replacement cost resulting from fewer launch vehicle

uses. We anticipate 52 fewer large cargo vehicle flights will be necessary to support the space

based scenario than are required to support the ground based scenario, since the launch vehicle is

more efficiendy manifested. The 52 flights represent 25% of the reusable booster stage's design

lifetime, and thus a $400M prorated replacement build cost savings.

Figure 19 shows a typical spread of space based program cost compared with ground based

program cost. This particular set of space based data reflects: Space Station accommodations costs

at $418M; Crediting the space based program with the booster build cost benefit associated with

fewer large cargo vehicle launches; and 0%, 50%, and 100% of space based OTV propellant

requirements provided by 'hitchhiked' propellants. The associated cost per flight data is also

tabulated. This type of data were generated for a parametric set of conditions, and used to bound

the range of possible space based programs.

33



CUMULATIVE
I_SCOUNTEO

LCC
(19eS SO)

GROUND BASED VS GROUND BASED/SPACE BASED
OTV OPTIONS

($418M SS ACCOMMODATIONS)
(NO LV BENEFITS TO SB)

4.00 -[ GB/SB OTV (0% Illt PRP)

t3.50

3.004 aRM.OTV(SO'+..

2.00

1.so )

1.00

o.so
0.o0

88 90 92 94 96 911 00 02 04 06 08 10
YEAR

COST PER FLIGHT

GBO'rV I ,$63.4M
GB I SB 0% l _77.6M
GB / se 50% I $60.6M
GB / SB 100% I S43.6M i

Figure 19 Typical Discounted Cost: Ground Based vs Space Based

Figure 20 summarizes the effects of several parameters influencing the economic viability of

space based OTV operations. The cost of a large cargo vehicle flight is fixed at $70M for this

figure, and the data reflects conducting the 160 civil GEO missions in the Scenario 2 mission model

from the space base. Conducting more missions from the space base would provide more cost

benefit. The data is shown on carpet plots that depict the life cycle savings (or loss) associated with

conducting the 160 missions from the space base as opposed to conducting them with a purely

ground based program. The two carpets to the left depict the cost picture in constant dollars, the

two to the right reflect discounted dollars. Each carpet depicts variation of two space basing cost

parameters: Space base OTV accommodations acquisition cost; And the percent of OTV propellant

requirements that are provided by qaitchhiked' propellants. Maximum hitchhiked propellants and

lowest accommodations acquisition cost yields the highest cost advantage for space basing. The

upper carpet in each pair summarizes the GB/SB cost comparison with the launch vehicle build

benefit, the lower shows the same comparison without this launch vehicle benefit. The position

where we feel the program stands is indicated with the circled data point.
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Figure 20 Space Basing Cost Sensitivity

It is clear that it is far more difficult to achieve economical space based operations on a

discounted cost basis than it is with constant dollars. We believe the space based program will save

$1B over the 160 flights in constant dollars, while the equivalent circumstances will show no net

difference in discounted dollars. In all cases, operations costs will be reduced, once the

development cost has been written off.

We recommend developing a space based OTV launch capability. It is difficult to show a

cost savings for space basing on a discounted cost basis. Consequently, it is important to keep

initial acquisition cost as low-as possible, and to maximize the efficiency of the 'hitchhiked'

propellant concept. Once the capability is acquired, operational cost is reduced, and other

operational benefits become available. We believe the capability is important for the nation, and

that it is worth the investment.
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7.0 CARGO VEHICLE BASED OTV PROGRAM

7.1 BASELINE PROGRAM DESCRIPTION

We have concluded that the preferred Orbital Transfer Vehicle program in the era where a

large cargo vehicle is available and Scenario 2 missions are to be performed will be as summarized

in Figure 21. It will comprise two types of orbital transfer vehicles. A three in-line engine, four

side-by side tank, unmanned, ground based vehicle with a 52,000 pound propellant capacity will

support initial missions. This vehicle will be used throughout the operational period. A generally

similar manned, space based vehicle with a 74,000 pound propellant capacity will be made

operational as soon as it can be supported by the Space Station. All manned missions will be

launched from a space base, but the space based vehicle can be launched from the ground as well.

Its initial mission will be ground based -- returning to residence at the Space Station upon return.
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Figure 21 Nominal LCV OTV Configurations

The major cost and schedules associated with the OTV configurations in Figure 21 _e

summarized in Figures 22 through 24. Figure 22 shows a spread of the major cost elements

involved in capturing the Scenario 2 DoD and Civil Mission Model. The total acquisition cost for

R&T, DDT&E for both ground and space based stages and space base accommodations, and

vehicle and accommodations production is $2B. The total cost of operations through FY 2010 is

$22.1B.
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The development schedule for the ground based OTV is summarized in Figure 23. An ATP

on January 1, 1989 supports an Initial Operational Capability in January 1995. A space based OTV

program ATP in January, 1990 (Figure 24) supports an Initial Operational Capability in January

1996. It is currently anticipated that this is the earliest space based operational capability that can be

supported, and that an initial capability near the turn of the century would be more likely to occur.
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7.2 PROGRAM SENSITIVITIES

The major characteristics of the five mission scenarios investigated arc shown in Figure 25.

Scenario 1 does not present a driver for space basing, particularly because it contains no manned

GEO missions. Scenario 2 justifies the 'nominal OTV program just discussed. Scenario 3 requires

nothing different from the OTV program, assuming that the limited SDI mission activity is not

multiple-launched on OTVs. Scenario 4 justifies a specialized OTV directed at the low

mid-inclination and other DoD traffic. Scenario 5 justifies a specialized nuclear waste OTV which

has a strong possibility of being able to perform selected DoD missions more effectively as well.

This scenario also requires build-up of multi-stage OTVs at the space base and requires that more

OTVs be resident in space.

SCENARIO 1

SCENARIO 2

SCENARIO 3

SCENARIO 4

SCENARIO 5

MAJOR
CHARACTERISTIC

NO MANNED GEO
PRIOR TO 2010
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ACTIVE PROGRAM

ADDITION OF
LARGE PLANETARIES

HEAVY DOD TRAFFIC
TO MID INCLINATION

AGGRESSIVE PROGRESS
TOWARDS 50-YEAR
INITIATIVES

IMPACT ON
OTV PROGRAM

NO SPACE BASE DRIVER

NOMINAL

MINIMAL IMPACT ON
OTV PROGRAM

SPECIALIZED 40K
OTV

• MULTI-STAGE BUILDUP
AT SPACE BASE

• SPECIALIZED NUCLEAR
WASTE O'IV

Figure 25 Mission Model Impact On OTV Program

The major characteristics of the five launch scenarios investigated are shown in Figure 26. It

is uncertain how much STS growth can be expected. If the OTV program is limited to the use of a

shuttle with a 65,000 pound (or less) payload capability, many of the early missions in all the

models will involve multiple launches with attendant operational problems. In this scenario, space

basing has even more virtue than in the cargo vehicle supported era we concentrated on in this

extension study. The large cargo vehicle without retrieval capability results in the recommended

OTV program previously discussed. The preferred OTV configuration for this case has been

shown to be the wide body configuration. This approach leads to the operational complexities cited
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in thegroundbasedcase.We would,of course prefer the wide-body retrieval capability if only its

operational cost is involved. The justification of the development cost of this capability is beyond

the scope of this OTV study. Propellant hitchhiking and scavenging are the economic savior of the

space based OTV concept. This justification is real, but will likely prove upsetting to the users that

are paying the launch bill. They would likely prefer to share in the cost benefit. The impact of STS

II on OTV program selection appears to be minimal.
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Figure 26 Launch Vehicle Impact On OTV Program

Four possible space basing scenarios are identified in the Figure 27. With no space based

support, missions that cannot be launched from the ground on a single flight require complex

Orbiter support operations. For example, launching a manned GEO mission would require two

current capability Orbiter launches on one week centers with Orbiter supported on-orbit mission

assembly. With a 65,000 pound capability STS, the occurrence of this problem is frequent. With

a large cargo vehicle, the problem will eventually occur. Space tending with the Space Station

would ease this problem, but the timing would still be constrained unless the ability to top

propellants were provided as a part of the space tending package. This approach does not enable

acquiring the potential benefit of the hitchhiked propellant concept. The nominal space based

approach achieves all the operational benefits previously discussed, and mitigates the cost of this

capability with the benefit of hitchhiked propellants. If space station were delayed until the manned

missions are scheduled, the impact would be: The large early missions would require either

complex ground based operations or more payload segmentation; And the operational base that is

required to pay off developmental cost would be beyond the horizon of this study.
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Figure 27 Space Basing Impact On OTV Program

Development of the reusable OTV is economically justified, even in the most modest

projected mission scenarios. We believe that, even though it is difficult to justify on a discounted

life cycle cost basis, the lower operational cost of space based OTV missions and the ancillary

operational benefits justify investment in space basing. Further Phase A effort should be directed at

identifying an initial OTV that will be useful whether or not a large cargo vehicle program is

initiated in the near future, and one that has a good growth path to space based capability. We

believe the key to meeting this objective is to develop a concept that can fly in an Aft Cargo Carrier

or a large cargo vehicle with minimal design penalty. After this concept is delineated, an extended

Phase B should optimize the concept, and a full scale development directed at achieving a mid 90's

initial operational capability should be undertaken.
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ASE
ATP
BTU
CDR
c/o
DD-250
DDT&E
DoD
ETR
EVA
GB
GEO
GVTA
HEO
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Isp
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KSC
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MSFC
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OMV
OTV
PDR
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R/T
RTV
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SDI
SOFI
SRB
S/S
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STAS
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Aft Cargo Carrier
Airborne Support Equipment
AuthoritytoProceed
British Thermal Unit

Critical Design Review
Checkout

FinalEnd Item Acceptance by theGovernment

Design,Development, Test,& Engineering

Dcpa.,tnc_tofDefense
EasternTestRange

Extra Vehicular Activity
Ground Based

Geostationary Orbit
Ground Vibration Test Article

High Earth Orbit
Hitchhiked Propellant
Initial Operational Capability
Indcpcndent Research and Development
Specific Impulse
Intra Vehicular Activity
Lift to Drag Ratio
Low Earth Orbit

Large Cargo Vehicle
Launch Vehicle

Johnson Spaceflight Center
Kennedy Space Center
Multi-Layer Insulation
Main Propulsion Test Article
Marshall Space Flight Center
Outside Mo.ld Line

Orbital Maneuvering Vehicle
Orbital Transfer Vehicle

Preliminary Design Review
Research and Technology
Round Trip
Room Temperature Vulcanizing Sealant
Space Based
Space Defense Initiative
Spray on Foam Insulator
Solid Rocket Booster
Space Station
Static Test Article

Space Transportation Architecture Study
Space Transportation System
Ballistic Coefficient, pounds/square foot
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